lucene是做什么的网上可以搜到很多资料,就不多说了。我想说了有一下几点
1.为什么不直接用数据库而选用lucene
因为lucene是全文搜索引擎,所以它比较擅长从一个词语中反过来找到那个词在哪篇文章中,是反着的,假如用数据,从2000个字中like那个字段效率很低,而lucene通过生成索引反过来的方式,这样可以提高查询的效率。
2.建立索引主要涉及到的方法和类
为了对文档进行索引,Lucene 提供了五个基础的类,他们分别是 Document, Field, IndexWriter, Analyzer, Directory。下面我们分别介绍一下这五个类的用途:
Document
Document 是用来描述文档的,这里的文档可以指一个 HTML 页面,一封电子邮件,或者是一个文本文件。一个 Document 对象由多个 Field 对象组成的。可以把一个 Document 对象想象成数据库中的一个记录,而每个 Field 对象就是记录的一个字段。
Field
Field 对象是用来描述一个文档的某个属性的,比如一封电子邮件的标题和内容可以用两个 Field 对象分别描述。
Analyzer
在一个文档被索引之前,首先需要对文档内容进行分词处理,这部分工作就是由 Analyzer 来做的。Analyzer 类是一个抽象类,它有多个实现。针对不同的语言和应用需要选择适合的 Analyzer。Analyzer 把分词后的内容交给 IndexWriter 来建立索引。
不同的需求需要选择适合自己的分词器分词器请看 http://approximation.iteye.com/blog/345885
IndexWriter
IndexWriter 是 Lucene 用来创建索引的一个核心的类,他的作用是把一个个的 Document 对象加到索引中来。
Directory
这个类代表了 Lucene 的索引的存储的位置,这是一个抽象类,它目前有两个实现,第一个是 FSDirectory,它表示一个存储在文件系统中的索引的位置。第二个是 RAMDirectory,它表示一个存储在内存当中的索引的位置。
熟悉了建立索引所需要的这些类后,我们就开始对某个目录下面的文本文件建立索引了,清单 1 给出了对某个目录下的文本文件建立索引的源代码。
3.查找所涉及的方法和类
利用 Lucene 进行搜索就像建立索引一样也是非常方便的。在上面一部分中,我们已经为一个目录下的文本文档建立好了索引,现在我们就要在这个索引上进行搜索以找到包含某 个关键词或短语的文档。Lucene 提供了几个基础的类来完成这个过程,它们分别是呢 IndexSearcher, Term, Query, TermQuery, Hits. 下面我们分别介绍这几个类的功能。
Query
这是一个抽象类,他有多个实现,比如 TermQuery, BooleanQuery, PrefixQuery. 这个类的目的是把用户输入的查询字符串封装成 Lucene 能够识别的 Query。
Term
Term 是搜索的基本单位,一个 Term 对象有两个 String 类型的域组成。生成一个 Term 对象可以有如下一条语句来完成:Term term = new Term(“fieldName”,”queryWord”); 其中第一个参数代表了要在文档的哪一个 Field 上进行查找,第二个参数代表了要查询的关键词。
例如我删了我数据库里的一条记录我想从索引里删除这条记录
Term term = new Term("userid",11110);
readers.deleteDocuments(term);
TermQuery
TermQuery 是抽象类 Query 的一个子类,它同时也是 Lucene 支持的最为基本的一个查询类。生成一个 TermQuery 对象由如下语句完成: TermQuery termQuery = new TermQuery(new Term(“fieldName”,”queryWord”)); 它的构造函数只接受一个参数,那就是一个 Term 对象。
IndexSearcher
IndexSearcher 是用来在建立好的索引上进行搜索的。它只能以只读的方式打开一个索引,所以可以有多个 IndexSearcher 的实例在一个索引上进行操作。
Hits
Hits 是用来保存搜索的结果的。
下面是我从lucene官网下载下的例子maven配置如下:
org.apache.lucene lucene-core 4.2.0 org.apache.lucene lucene-queries 4.2.0 org.apache.lucene lucene-analyzers 3.6.2 org.apache.lucene lucene-analyzers-common 4.2.0 org.apache.lucene lucene-queryparser 4.2.0
生成索引的代码
package com.my.lucene2;import org.apache.lucene.analysis.Analyzer;import org.apache.lucene.analysis.standard.StandardAnalyzer;import org.apache.lucene.document.Document;import org.apache.lucene.document.Field;import org.apache.lucene.document.LongField;import org.apache.lucene.document.StringField;import org.apache.lucene.document.TextField;import org.apache.lucene.index.IndexWriter;import org.apache.lucene.index.IndexWriterConfig.OpenMode;import org.apache.lucene.index.IndexWriterConfig;import org.apache.lucene.index.Term;import org.apache.lucene.store.Directory;import org.apache.lucene.store.FSDirectory;import org.apache.lucene.store.RAMDirectory;import org.apache.lucene.util.Version;import org.wltea.analyzer.lucene.IKAnalyzer;import java.io.BufferedReader;import java.io.File;import java.io.FileInputStream;import java.io.FileNotFoundException;import java.io.IOException;import java.io.InputStreamReader;import java.util.Date;public class IndexFiles { private IndexFiles() {} public static void main(String[] args) { // 生成索引的位置 String indexPath = "D:\\test\\bb\\index"; // 将要生成索引的文件目录 String docsPath = "D:\\test\\aa\\"; final File docDir = new File(docsPath); if (!docDir.exists() || !docDir.canRead()) { System.exit(1); } Date start = new Date(); try { System.out.println("Indexing to directory '" + indexPath + "'..."); //Directory rdir =new RAMDirectory(); 把建立的索引放入内存 // 建立磁盘索引放入磁盘 Directory dir = FSDirectory.open(new File(indexPath)); // Analyzer analyzer = new StandardAnalyzer(Version.LUCENE_42); lucene自带的标准分词 Analyzer analyzer = new IKAnalyzer(); // 二元ik分词 // 配置建立索引 IndexWriterConfig iwc = new IndexWriterConfig(Version.LUCENE_42, analyzer); boolean create = true; if (create) { //新创建索引 iwc.setOpenMode(OpenMode.CREATE); } else { // 增加索引 iwc.setOpenMode(OpenMode.CREATE_OR_APPEND); } // Optional: for better indexing performance, if you // are indexing many documents, increase the RAM // buffer. But if you do this, increase the max heap // size to the JVM (eg add -Xmx512m or -Xmx1g): // // iwc.setRAMBufferSizeMB(256.0); // 创建索引对象 IndexWriter writer = new IndexWriter(dir, iwc); indexDocs(writer, docDir); // NOTE: if you want to maximize search performance, // you can optionally call forceMerge here. This can be // a terribly costly operation, so generally it's only // worth it when your index is relatively static (ie // you're done adding documents to it): // // writer.forceMerge(1); writer.close(); Date end = new Date(); System.out.println(end.getTime() - start.getTime() + " total milliseconds"); } catch (IOException e) { System.out.println(" caught a " + e.getClass() + "\n with message: " + e.getMessage()); } } static void indexDocs(IndexWriter writer, File file) throws IOException { // do not try to index files that cannot be read if (file.canRead()) { if (file.isDirectory()) { String[] files = file.list(); // an IO error could occur if (files != null) { for (int i = 0; i < files.length; i++) { indexDocs(writer, new File(file, files[i])); } } } else { FileInputStream fis; try { fis = new FileInputStream(file); } catch (FileNotFoundException fnfe) { // at least on windows, some temporary files raise this exception with an "access denied" message // checking if the file can be read doesn't help return; } try { // make a new, empty document Document doc = new Document(); // Add the path of the file as a field named "path". Use a // field that is indexed (i.e. searchable), but don't tokenize // the field into separate words and don't index term frequency // or positional information: Field pathField = new StringField("path", file.getPath(), Field.Store.YES); System.out.println("sss " + pathField); doc.add(pathField); // Add the last modified date of the file a field named "modified". // Use a LongField that is indexed (i.e. efficiently filterable with // NumericRangeFilter). This indexes to milli-second resolution, which // is often too fine. You could instead create a number based on // year/month/day/hour/minutes/seconds, down the resolution you require. // For example the long value 2011021714 would mean // February 17, 2011, 2-3 PM. doc.add(new LongField("modified", file.lastModified(), Field.Store.NO)); // Add the contents of the file to a field named "contents". Specify a Reader, // so that the text of the file is tokenized and indexed, but not stored. // Note that FileReader expects the file to be in UTF-8 encoding. // If that's not the case searching for special characters will fail. doc.add(new TextField("contents", new BufferedReader(new InputStreamReader(fis, "gbk")))); doc.add(new StringField("test", "雪含心", Field.Store.YES)); // doc.add 我们可以根究需求去增加字段例如我以增加一个userid,这样没删除一个user我就能更新索引 if (writer.getConfig().getOpenMode() == OpenMode.CREATE) { // New index, so we just add the document (no old document can be there): System.out.println("adding " + file); writer.addDocument(doc); } else { // Existing index (an old copy of this document may have been indexed) so // we use updateDocument instead to replace the old one matching the exact // path, if present: System.out.println("updating " + file); writer.updateDocument(new Term("path", file.getPath()), doc); } } finally { fis.close(); } } } }}
搜索的代码
package com.my.lucene2;/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */import java.io.BufferedReader;import java.io.File;import java.io.FileInputStream;import java.io.IOException;import java.io.InputStreamReader;import java.util.Date;import org.apache.lucene.analysis.Analyzer;import org.apache.lucene.analysis.standard.StandardAnalyzer;import org.apache.lucene.document.Document;import org.apache.lucene.index.DirectoryReader;import org.apache.lucene.index.IndexReader;//import org.apache.lucene.index.StoredDocument;import org.apache.lucene.queryparser.classic.QueryParser;import org.apache.lucene.search.IndexSearcher;import org.apache.lucene.search.Query;import org.apache.lucene.search.ScoreDoc;import org.apache.lucene.search.TopDocs;import org.apache.lucene.store.FSDirectory;import org.apache.lucene.util.Version;import org.wltea.analyzer.lucene.IKAnalyzer;/** Simple command-line based search demo. */public class SearchFiles { private SearchFiles() {} /** Simple command-line based search demo. */ public static void main(String[] args) throws Exception { String usage = "Usage:\tjava org.apache.lucene.demo.SearchFiles [-index dir] [-field f] [-repeat n] [-queries file] [-query string] [-raw] [-paging hitsPerPage]\n\nSee http://lucene.apache.org/core/4_1_0/demo/ for details."; if (args.length > 0 && ("-h".equals(args[0]) || "-help".equals(args[0]))) { System.out.println(usage); System.exit(0); } String index = "D:\\test\\bb\\index\\"; String field = "contents"; // 查找的字段名 String queries = "D:\\test\\bb\\index\\bb.txt"; int repeat = 0; boolean raw = false; String queryString = null; int hitsPerPage = 10; // 分页用 // 读索引 IndexReader reader = DirectoryReader.open(FSDirectory.open(new File(index))); IndexSearcher searcher = new IndexSearcher(reader); // 标准分词 //Analyzer analyzer = new StandardAnalyzer(Version.LUCENE_42); Analyzer analyzer =new IKAnalyzer(); // 从一个文本里读出我们要搜索的内容,这个也可以写成死的 BufferedReader in = null; if (queries != null) { File file = new File(queries); in = new BufferedReader(new InputStreamReader(new FileInputStream(queries), "gbk")); } else { in = new BufferedReader(new InputStreamReader(System.in, "gbk")); } // 生成解析器 QueryParser parser = new QueryParser(Version.LUCENE_42, field, analyzer); while (true) { if (queries == null && queryString == null) { // prompt the user System.out.println("Enter query: "); } // 读出写入的要查找的内容赋值给queryString String line = queryString != null ? queryString : in.readLine(); if (line == null || line.length() == -1) { break; } line = line.trim(); if (line.length() == 0) { break; } // 查找 Query query = parser.parse(line); System.out.println("Searching for: " + query.toString(field)); // 如果repeate大于0取出查出结果的前100条数据 这个没有意义,demo里面这么写的 if (repeat > 0) { // repeat & time as benchmark Date start = new Date(); for (int i = 0; i < repeat; i++) { searcher.search(query, null, 100); } Date end = new Date(); System.out.println("Time: "+(end.getTime()-start.getTime())+"ms"); } doPagingSearch(in, searcher, query, hitsPerPage, raw, queries == null && queryString == null); if (queryString != null) { break; } } reader.close(); } /** * This demonstrates a typical paging search scenario, where the search engine presents * pages of size n to the user. The user can then go to the next page if interested in * the next hits. * * When the query is executed for the first time, then only enough results are collected * to fill 5 result pages. If the user wants to page beyond this limit, then the query * is executed another time and all hits are collected. * */ public static void doPagingSearch(BufferedReader in, IndexSearcher searcher, Query query, int hitsPerPage, boolean raw, boolean interactive) throws IOException { // Collect enough docs to show 5 pages TopDocs results = searcher.search(query, 5 * hitsPerPage); // 查找出来的所有文档 ScoreDoc[] hits = results.scoreDocs; // 总条数 int numTotalHits = results.totalHits; System.out.println(numTotalHits + " total matching documents"); int start = 0; int end = Math.min(numTotalHits, hitsPerPage); while (true) { if (end > hits.length) { System.out.println("Only results 1 - " + hits.length +" of " + numTotalHits + " total matching documents collected."); System.out.println("Collect more (y/n) ?"); String line = in.readLine(); if (line.length() == 0 || line.charAt(0) == 'n') { break; } hits = searcher.search(query, numTotalHits).scoreDocs; } end = Math.min(hits.length, start + hitsPerPage); for (int i = start; i < end; i++) { if (raw) { // output raw format System.out.println("doc="+hits[i].doc+" score="+hits[i].score); continue; } Document doc = searcher.doc(hits[i].doc); // 查找到匹配的文档 String path = doc.get("path"); // print the filed 雪含心 System.out.println("the content is ....." + doc.get("test")); if (path != null) { System.out.println((i+1) + ". " + path); String title = doc.get("title"); if (title != null) { System.out.println(" Title: " + doc.get("title")); } } else { System.out.println((i+1) + ". " + "No path for this document"); } } if (!interactive || end == 0) { break; } if (numTotalHits >= end) { boolean quit = false; while (true) { System.out.print("Press "); if (start - hitsPerPage >= 0) { System.out.print("(p)revious page, "); } if (start + hitsPerPage < numTotalHits) { System.out.print("(n)ext page, "); } System.out.println("(q)uit or enter number to jump to a page."); String line = in.readLine(); if (line.length() == 0 || line.charAt(0)=='q') { quit = true; break; } if (line.charAt(0) == 'p') { start = Math.max(0, start - hitsPerPage); break; } else if (line.charAt(0) == 'n') { if (start + hitsPerPage < numTotalHits) { start+=hitsPerPage; } break; } else { int page = Integer.parseInt(line); if ((page - 1) * hitsPerPage < numTotalHits) { start = (page - 1) * hitsPerPage; break; } else { System.out.println("No such page"); } } } if (quit) break; end = Math.min(numTotalHits, start + hitsPerPage); } } }}
这个代码的流程是从一个目录下读出所有的文件然后建立索引,再从一个文件里读出一个词去搜索,建立索引也可以从数据库里读取信息
总结:我对lucene了解不是多么深入,希望加深对lucene的了解,以后学学solr,lucene的应用场景和分词技巧还是要好好研究的